
J. Am. Chem. Soc. 1991, 113, 4703-4704 4703 

hemagglutination of erythrocytes 103-104 times more than 
Neu5Aca2Me.22 

In summary, it appears that bidentate binding occurs to dif­
ferent HA trimers on influenza virus. From the relative binding 
affinities of our bivalent compounds, the distance between SA 
binding sites on different HA trimers must be less than about 55 
A. Interestingly, the effects we have observed are not unique to 
influenza virus: G(4,4) inhibits the agglutination of erythrocytes 
by polyoma virus some 500-fold better than Neu5Aca2Me.23 

While we do not know if inhibition of hemagglutination correlates 
with blockade of viral infectivity, further experiments with defined 
polyvalent ligand analogues should clarify the nature of viral 
recognition and may suggest routes to new antiviral agents. 
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In addition to its effects on molecular structure and spectros­
copy, aromaticity strongly influences chemical reactivity. Studies 
of reduction, oxidation, and substitution reactions involving 
benzene and heterobenzene derivatives form a central component 
of organic chemistry.2 However, related studies on metalla-
benzenes have not been pursued because of the scarcity of met­
al-containing aromatic systems.3 We recently reported the 

synthesis of a rare, stable metallabenzene complex, (In -5CH-
C(Me)"CH"C(Me)"CH)(PEt3)3 (I).4 Structural and spec­
troscopic data for 1 clearly indicated the presence of an aromatic 
ring system. We now report initial findings on the reactivity of 
1, which parallels in some respects the reactivity of conventional 
benzene derivatives, and in others does not. 

Unlike organic arenes, 1 reacts with H2 at room temperature 
and 1 atm of pressure, generating the partially hydrogenated 

iridacylohexadiene complex ^r-(IrCH2C(Me)=CHC(Me)-

=CH)(PEt3)3(H) (2)5 (see Scheme I). This reaction probably 
proceeds via dissociation of a PEt3 ligand from 1, producing 16 
e" (l'n-<;H"C(Me)"CHTTC(Me)"CH)(PEt3)2. Oxidative ad-
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Figure 1. ORTEP drawing of (IrCH=C(Me)CHC(Me)=CH)(PEt3)3 

(3). Selected bond distances: Ir-P(I), 2.279 (3) A; Ir-P(2), 2.387 (2) 
A; Ir-P(3), 2.395 (2) A; Ir-C(I), 2.075 (8) A; Ir-C(5), 2.062 (8) A; 
I r -0( 1), 2.111 (6) A; C( 1)-C(2), 1.315(1I)A; C(2)-C(3), 1.512 (11) 
A; C(3)-C(4), 1.521 (13) A; C(4)-C(5), 1.339 (12) A;0( l ) -0 (2 ) , 1.466 
(7) A; 0(2)-C(3), 1.435 (10) A. 

Scheme I 

dition of H2, followed by hydride migration from the iridium center 
to the ortho carbon of the ring and readdition of PEt3, yields the 
observed product. 

Compound 1 in pentane solution reacts with atmospheric 
oxygen to produce the novel dioxygen-bridged species 

(IrCH=C(Me)CHC(Me)=CH)(PEt3)3 (3) (see Scheme I and 

ORTEP drawing, Figure I).6'7 The iridacylohexa-2,5-diene ring 
in 3 is boat-shaped with Ir and C(3) residing 0.92 and 0.65 A, 
respectively, out of the C(l)/C(2)/C(4)/C(5) plane. This reaction 
is reminiscent of the reaction of certain polycyclic aromatic 
compounds (e.g., anthracene) with O2, which lead to internal 
peroxides.8 However, unlike these organic reactions which require 
singlet oxygen, 1 reacts with ground-state (triplet) oxygen. 
Furthermore, unlike the reaction of 1 with H2 (which requires 
PEt3 loss and therefore proceeds relatively slowly), the O2 reaction 

(6) Spectroscopic data for 3: 1H NMR (C6D6, 17 0C, 300 MHz) « 7.37 
(m, 2, H1/H5), 4.59 (s, 1, H3), 2.32 (s, 6, ring CHj's), 1.95-1.77 (m, 6, PEt3 
CHj's), 1.71-1.53 (m, 12, PEt5 CH2's), 1.10-0.97 (m, 18, PEt3 CH3's), 
0.82-0.69 (m, 9, PEt3 CH3's); 13CI1H) NMR (C6D6, 17 "C, 75 MHz) S 132.1 
(d of t, yc.P = 89.4, 9.2 Hz, C1/C5), 129.5 (s, C2/C4), 92.3 (s, C3), 26.5 
(t, Jc-T = 4.7 Hz, ring CH3's), 19.8 (d, JC-T - 32.2 Hz, PEt3 CH2's), 16.1 
(d, J0-T = 22.8 Hz, PEt3 CH2's), 8.8 (virtual t, Jc.r = 5.1 Hz, PEt3 CH3's), 
8.6 (d, JC.T = 5.1 Hz, PEt3 CH3's); 31PI1H) NMR (C6D6, 17 0C, 121 MHz, 
referenced to external H3PO4) 6 -29.5 (t, JT-T = 9.5 Hz, 1, PEt3), -35.8 (d, 
JT-T = 9.5 Hz, 2, equivalent PEt3's). 

(7) Crystal data for 3: monoclinic, space group P2Jc. a = 16.713 (5) A, 
6 = 10.454 (3) A, c = 17.609 (4) A, /3 = 103.99 (2)°, V= 2985.3 (14) A3, 
Z = 4. 

(8) Rigaudy, J. Pure Appl. Chem. 1968, 16, 169. 
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Figure 2. ORTEP drawing of [(Ip-CH>->C(Me)"CH"C(Me)"CH)-
(PEt3)J]Mo(CO)3 (5). Selected bond distances: Ir-Mo, 2.978 (1) A; 
Ir-P(I), 2.274 (2) A; Ir-P(2), 2.365 (2) A; Ir-P(3), 2.369 (2) A; Ir-
C(I), 2.025 (8) A; Ir-C(S), 2.038 (9) A; C(l)-C(2), 1.399 (13) A; 
C(2)-C(3), 1.411 (14) A;C(3)-C(4), 1.429 (13) A; C(4)-C(5), 1.393 
(12) A; Mo-C(I), 2.397 (8) A; Mo-C(2), 2.404 (9) A; Mo-C(3), 2.318 
(10) A; Mo-C(4), 2.355 (9) A; Mo-C(5), 2.349 (9) A. 

is rapid (15 min) and probably involves initial transfer of an 
electron from 1 to O2. 

Treatment of 1 in acetone solution with iodine (I2) leads to the 

rapid production of (Ip- 'CH'-=C(Me)"CH"C(Me)"CH)-
(PEt3J2(I)2 (4), in which the aromatic ring is retained (see Scheme 
I).9 Thus, 1 undergoes oxidative addition of I2 at the iridium 
center rather than electrophilic aromatic substitution at carbon.10 

Although the detailed mechanism of this oxidative addition re­
action is still unknown, both one-electron and two-electron pro­
cesses can be envisaged. The 1H NMR signals for ring protons 
Hl /H5 and H3 in 4 are shifted dramatically downfield, appearing 
at 5 13.95 and 7.86, respectively. These shifts reflect the influence 
of a strong aromatic ring current, together with the electronic 
effect of two electronegative iodine atoms in the ring plane. 

Finally, 1 cleanly displaces p-xylene from (p-xylene) Mo(CO)3 

in tetrahydrofuran (THF) solvent, producing the metal-coordi­
nated metallabenzene complex, [ ( I n - C H - C ( M e ) - C H - C -
(MeKCH)(PEt3)3]Mo(CO)3 (5) (see Scheme I and ORTEP 
drawing, Figure 2)."'12 As is normally the case when arenes 
coordinate to metal fragments, the 1H NMR signals for the ring 
protons in 5 shift upfield from their positions in the parent me­
tallabenzene, 1. Protons H1/H5 in 5 appear at 5 8.16 (vs 5 10.91 
in 1), while H3 resonates at 5 6.31 (vs S 7.18 in I ) ." Furthermore, 
the metallabenzene moiety in 5 rotates with respect to the Mo-
(CO)3 fragment. Hence, the carbonyl carbon atoms in 5 give rise 
to just one signal in the 13CI1H) NMR spectrum, even at -80 0C. 

The infrared CO stretching bands exhibited by 5 in THF so­
lution appear at very low energies (1918, 1836 cm"1) compared 

(9) Spectroscopic data for 4: 1H NMR (CD3C(O)CD3, 17 0C, 300 MHz) 
6 13.95 (s, 2, H1/H5), 7.86 (s, 1, H3), 2.37 (s, 6, ring CH3's), 2.12-1.90 (m, 
12, PEt3 CH2's), 1.00-0.78 (m, 18, PEt3 CH3's); 13C(1HI NMR (CD3C(O)-
CD3, 17 0C, 75 MHz) { 215.1 (s, C1/C5), 161.6 (s, C3), 134.8 (s, C2/C4), 
25.4 (s, ring CH3's), 19.3 (virtual t, JC-r = 36.4 Hz, PEt3 CH2's), 8.6 (s, PEt3 
CH3's); 31P)1HI NMR (CD3C(O)CD3, 17 0C, 121 MHz, referenced to ex­
ternal H3PO4) S -22.6 (s). The structure of 4 has been confirmed by an X-ray 
diffraction study. 

(10) The same product is obtained when the reaction is run in the presence 
of a Friedel-Crafts catalyst. 

(11) Spectroscopic data for 5: 1H NMR (CD3C(O)CD3, 17 0C, 300 
MHz) 5 8.16 (br d, /H-p - 20.4 Hz, 2, H1/H5), 6.31 (s, 1, H3), 2.10 (s, 6, 
ring CH3's), 2.20-2.00 (m, 12, PEt3 CH2's), 1.83-1.71 (m, 6, PEt3 CH2's), 
1.29-1.20 (m, 18, PEt3 CH3*s), 0.96-0.85 (m, 9, PEt3 CH3's); 13Q1HINMR 
(C4D8O, 17 0C, 75 MHz) S 229.8 (s, CO's), 135.7 (d of d, /C .P = 74.5, 9.4 
Hz, C1/C5), 107.9 (s, C2/C4), 99.5 (s, C3), 29.3 (s, ring CH3's), 24.8-24.3 
(m, PEt3 CH2's), 22.0-21.6 (m, PEt3 CH2's), 10.4 (s, PEt3 CH3's), 9.0 (s, PEt3 
CHj's); 31P(1HI NMR (CD3C(O)CD3, 17 0C, 121 MHz, referenced to ex­
ternal H3PO4) iS 19.9 (t, /p-P = 3.5 Hz, 1, axial PEt3), -19.4 (d, Jp-P = 3.5 
Hz, 2, basal PEt3's). 

(12) Crystal data for 5: monoclinic, space group PlJn, a = 9.897 (1) A, 
b = 16.213 (3) A, c = 20.937 (3) A, 0 = 96.68 (I)0, V= 3336.7 (9) A3, Z 
= 4. 

to other (arene)Mo(CO)3 complexes,13 reflecting the extremely 
electron-rich nature of 1. Since the stability of (arene)Mo(CO)3 

complexes increases with increasing arene basicity, it is not 
surprising that 1 readily displaces organic arenes from (arene)-
Mo(CO)3 complexes in THF solvent.14 

Through this preliminary study, several reactivity features of 
metallabenzene complex 1 have emerged. First, the electron-rich 
metal center directs much of the chemistry by undergoing lig-
and-dissociation, oxidative-addition, and electron-transfer pro­
cesses. Second, the aromaticity of the ring system appears to be 
quite fragile and is, in fact, disrupted in several of the reactions 
reported herein. Future work will continue to explore the chem­
istry of metallabenzenes via-a-vis their conventional organic 
counterparts. 
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(13) By comparison, the v(CO) bands for (hexamethylbenzene)Mo(CO)3 
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The novel amino acid f/ww-(+)-S-l-propenyl-L-cysteine sulf­
oxide (1) (PCS) is the constituent of the onion plant (Allium 
cepa)x that has been shown1 to be the precursor of (Z)-
propanethial S-oxide (2), the lachrymatory substance characteristic 
of this plant (eq I).2 Previous investigations in our laboratory3 
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0 COOH 

3 

? Aliinase +*'" 
B (D 

have demonstrated that 1 is derived from (2S,6R)-(-)-S-(2-
carboxy-n-propyl)cysteine (CPC) (3) by an oxidative decarbox­
ylation process that proceeds with the loss of one hydrogen atom 
from C-3 of CPC and none from C-2. This observation indicated 

(1) Spare, C-G.; Virtanen, A. I. Suom. Kemistil. 1961, B34, 72; 1962, 
B3S, 28. 
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